MMP Learning Seminar.

$$
W_{\text {eek }} 70
$$

Content:
Boundedness of varieties of general type.

Boundedness of varieties of general type.
Theorem (DCC of volumes): Fix $n \in \mathbb{N}$ and a set $I \subseteq[0,1]$ which satisfies the DCC.
Let \varnothing be the set of projective \log canonical pairs (X, B) such that $\operatorname{dim} X=n$, and $\operatorname{coeff}(B) \leq 1$. Then there is a constant $\delta>0$ and a positive integer m such that:
(1) The set $\{$ vol $(X, K x+B) \mid(X, B) \in D\}$ satisfies the $D C C$
(2) if $\operatorname{vol}\left(X, K_{x}+B\right)>0$, then $\operatorname{vol}\left(x, K_{x}+B\right) \geqslant \delta$.
(3) if $K_{x}+B$ is beg. then $\phi_{m\left(K_{x}+B\right)}$ is birationil.

$$
\begin{cases}Y & \varphi^{*}\left(k_{x}\right)=k_{\tau}+(1+\varepsilon) E \\ e & \text { This } \varepsilon \text { could go to zero } \\ \downarrow & \end{cases}
$$

Theorem (Boundedness of anti-canonical volumes):
Let D be the set of $k l l$ pain (X, B) such that. X is projective, $\operatorname{dim} X=n$

$$
K_{x}+B \equiv 0, \quad \text { and } \quad \operatorname{cocff}(B) \subseteq I
$$

Then, there exists a constant $M \geq 0$ only depending on n and I such that vol $\left(X,-K_{x}\right)<M$ for every pair $(X, B) \in D$.

Example: $\quad X=\mathbb{L}^{D}\left(a_{0}, \ldots, a_{n}\right), \quad(X, E)$
Assume well -formed. \log canonical CY $K x+E \sim 0$.

$$
\begin{aligned}
& \operatorname{Vol}\left(X,-K_{x}\right)=\frac{\left(a_{0}+\ldots+a_{n}\right)^{n}}{\left(a_{0} \ldots a_{n}\right)} \cdot \begin{array}{l}
1-M K_{x} \mid \ni \Gamma \\
(X, \Gamma / M)
\end{array} \\
& X_{p}=\mathbb{D}(p, 3,2), \quad \frac{(p+5)^{2}}{\sigma p} \rightarrow \infty . \text { if } p \rightarrow \infty .
\end{aligned}
$$

Homework: Find the minimum m sit $|-m| r_{x} \mid$ admits a kit element. Ans: $m \sim \sqrt{p}$ -

Theorem (Effective birationality):
\mathcal{F} the set of l_{c} pairs (X, B) such that X is projective, $\operatorname{dim} X=n, \quad V_{x}+B$ is big. $\operatorname{cocff}(B) \subseteq I$.
Then $\varnothing_{m}\left(K_{x}+B\right)$ is birational where $m:=m\left(n_{1} I\right)$.
Theorem (The ACC for nomerically trivial pairs): There exists a finite subset $I_{0} \subseteq I$ such that if (X, B) satisfies the following:
(1) (X, B) is an n-dimensional projective le pair.
(2) $|\operatorname{cocff}(B) \subseteq I|$ and
(3) $K x+B \equiv 0$.

Then, the coefficient sets of B belong to I_{0}

Theorem (The ACC for log canonical thresholds):
There exists a constant $\delta \geq 0$ such that. if:
(1) (X, B) is a n-dimensional \log pair with $\operatorname{cocff}(B) \subseteq I$.
(2) (X, Φ) is kit for some $\Phi 20$, and
(3) $B^{\prime} 3(1-\delta) B$ where $\left(X, B^{\prime}\right)$ is \log canonical.)

Then (X, B) is \log canonical.

- Boundedness of anti-canonical volumes:
(X, B) kit, $K_{x}+B \equiv 0$, and $\operatorname{vol}\left(-k_{x}\right)>0$. (is really large.

$$
0 \leq G v_{0}-K_{x},
$$

$$
\text { mut } x(G)>\frac{1}{2}\left(\text { vol }\left(X,-K_{x}\right)\right)^{\frac{1}{n}}
$$

$(X, t G)$ is \log canonical for t very small. (X, B) kit.
$(X, \Phi=(1-\delta) B+\delta G)$ with the smallest
 real number for which the previous pair is lc but not kill.

$$
N x+\Phi \equiv(1-\delta) k x+B
$$

The rest of the proof consists of a global-to-bcal argument and show that $\delta>0$ small vislatos ACC.

Theorem (Boundedness of varieties of general type): Fix $n \in \mathbb{N}$ and a set $I \subseteq[0,1] \cap \mathbb{Q}$ satisfying the $D C C$. \& $d>0$. Then, the set $\mathcal{F}_{\text {sc }}(n, 1, d)$ is bounded, that is, there exists a projective morphim of $q \cdot P$ varieties $\pi, X \longrightarrow T$ and a Q - divisor \mathscr{B} on x such that the set of parrs $\left\{\left(X_{t}, D_{t}\right) \mid t \in T\right\}$ given by the fibers of π is in bijection with the elements of $\mathcal{F}_{\text {sic }}(n, I, d)$.

Last step: $\quad X^{v} \rightarrow X, \quad X^{\prime \prime}=\Perp X_{i}$.
$K_{x^{2}}+B^{2}$ is ample.
$\left|K x^{2}+B^{2}\right|_{s^{2}}$ is ample \Longrightarrow involution τ (X, B, S, T) is bounded belongs to an algebrare gray.
$\operatorname{Diff}_{s^{v}}\left(B^{v}\right) \curvearrowleft T$ must $f \times$ this.

Proposition 4.1: Fix $\omega \in \mathbb{R}>0, n \in \mathbb{N}$, I satisfying the DCC. (Z, D) projective \log smooth n-dimensional vanety. D ratal
$M_{D}=$ strict transform of $D+$ reduced exceptional © b-divisor.
There exists a finite sequence of blow-ups ${ }^{\prime}$ of strata of M_{D}. such that if:
(1) (X, B) is proj \log smooth n-dim,
(2) $g: X \longrightarrow Z$ is a finite sequence of blow ops of strath of M_{p}.
(3) $\operatorname{cocff}(B) \subseteq I$.
(a) $g_{\infty} B \leq D$, and $\quad B \leqslant M_{D, x}$
(s) $v_{0} \mid\left(X, K_{x}+B\right)=\omega$.

Then, $\operatorname{kol}\left(Z^{\prime}, N_{z^{\prime}}+M_{B z^{\prime}}\right)=w$.

$$
z^{\prime} \cdots, x
$$

Proposition 4.2: $F i x \quad n \in \mathbb{N}, d_{20}$ and $[\leq[0,1] \cap Q$ satisfying the DCC. Let $\mathcal{F}_{1 c}(n, d, 1)$ be the set of pairs (X, B) which are disjoint union of ample models $\left(X_{i}, B_{i}\right)$ where $\operatorname{dim} X_{i}=n, \quad$ coff $\left(B_{i}\right) \subseteq I$ and $\left(K_{x}+B\right)^{n}=d$. Then, $\mathcal{I}_{c}(d, I, n)$ is boondal.

Proof: Assume irreducible \& consider $\left(X_{i}, B_{i}\right)$, we have a \log birationally bounded family:

$\left(Z^{\prime}, \Phi\right)$ is a terminal pair use invariance of plurigenera to prove that.
$\operatorname{Vol}\left(Z_{t_{i}}^{\prime}, K z_{t_{i}}+\Phi_{t_{i}}\right)=d$, constant. The ample model of the $Z_{t_{i}^{\prime}}$ are just X_{i}.

Lemma 4.3: (X, B) lc pair $K_{x}+B$ is by
$f: X \rightarrow W$ an ample model for $K x+B$
If $B^{\prime} \geqslant B, \quad\left(X, B^{\prime}\right)$ is lc and $\operatorname{vol}\left(k_{x}+B\right)=v_{0}\left(k_{x}+B^{\prime}\right)$.
Then W is also an ample model for $K_{x}+B^{\prime}$.
Proof: $f: X \longrightarrow W$ is a morphisim. $A=f_{x}\left(K_{x}+B\right)$
$F:=K_{x}+B-f^{x} A$ is effective \& f-exceptional.

$$
\left.\begin{array}{rl}
\operatorname{vol}\left(X, K_{x}+B\right) & =\operatorname{vol}\left(X, k_{x}+B+t\left(B^{\prime}-B\right)\right) \\
& \geqslant \operatorname{vol}\left(X, f^{\prime \prime} A+t\left(B^{\prime}-B\right)\right) \\
& \geqslant \operatorname{kol}\left(X, f^{*} A\right) \\
& =\operatorname{vol}\left(X, K_{x}+B\right)
\end{array}\right\} \text { indeponstant } \begin{aligned}
& \text { of }
\end{aligned}
$$

E a component of $B^{\prime}-B$.

$$
\begin{aligned}
\left.0=\frac{d}{d t} \operatorname{vol}_{0}\left(X, f^{x} A+t E\right)\right)_{t=0} & =n v_{0} l_{E}\left(f^{n} A\right) \\
& \geqslant n \cdot E \cdot f \cdot A^{n-1} \\
& =n \operatorname{deg} f \times E
\end{aligned}
$$

Hence E is f-exceptional.

$$
\begin{aligned}
& H^{0}\left(X, \theta_{x}\left(m\left(K x+B^{\prime}\right)\right)=\right. \\
& H^{0}\left(X, \theta_{x}\left(m f^{*} A+m(E+F)\right)=\right. \\
& H^{0}\left(X, \theta_{x}\left(m f^{*} A\right)\right)= \\
& H^{0}\left(X, \theta_{x}\left(m\left(K_{x}+B\right)\right) .\right.
\end{aligned}
$$

$K x+B$ \& $K x+B$ have the same Canonical ring

